Formules / Propriétés de calcul

Fondamental

Si \(x\) et \(y\) sont deux nombres réels quelconques, alors :

  • \(e^{x+y}=e^{x}\times e^{y}\) comme pour les puissances de 10...

  • \(e^{-x}=\frac{1}{e^{x}}\) permet de définir l'exponentielle d'un nombre négatif à partir de l'exponentielle de son opposé (positif)

  • \(e^{x-y}=\frac{e^x}{e^{y}}\) comme pour les puissances de 10...

  • Si de plus \(k\) est nombre entier relatif, alors \(e^{kx}=(e^x)^k\)

ComplémentS'entraîner...